7 research outputs found

    Understanding the Effect of Transpilation in the Reliability of Quantum Circuits

    Get PDF
    Transpiling is a necessary step to map a logical quantum algorithm to a circuit executed on a physical quantum machine, according to the available gate set and connectivity topology. Different transpiling approaches try to minimize the most critical parameters for the current transmon technology, such as Depth and CNOT number. Crucially, these approaches do not take into account the reliability of the circuit. In particular, transpilation can modify how radiation-induced transient faults propagate. In this paper, we aim at advancing the understanding of transpilation impact on fault propagation by investigating the low-level reliability of several transpiling approaches. We considered 4 quantum algorithms transpiled for 2 different architectures, increasing the number of qubits, and all possible logical-to-physical qubit mapping, adding to a total of 4, 640 transpiled circuits. We inject a total of 202, 124 faults and track their propagation. Our experiments show that by simply choosing the proper transpilation, the reliability of the circuit can improve by up to 14%

    QuGAN: A Quantum State Fidelity based Generative Adversarial Network

    Full text link
    Tremendous progress has been witnessed in artificial intelligence where neural network backed deep learning systems have been used, with applications in almost every domain. As a representative deep learning framework, Generative Adversarial Network (GAN) has been widely used for generating artificial images, text-to-image or image augmentation across areas of science, arts and video games. However, GANs are computationally expensive, sometimes computationally prohibitive. Furthermore, training GANs may suffer from convergence failure and modal collapse. Aiming at the acceleration of use cases for practical quantum computers, we propose QuGAN, a quantum GAN architecture that provides stable convergence, quantum-state based gradients and significantly reduced parameter sets. The QuGAN architecture runs both the discriminator and the generator purely on quantum state fidelity and utilizes the swap test on qubits to calculate the values of quantum-based loss functions. Built on quantum layers, QuGAN achieves similar performance with a 94.98% reduction on the parameter set when compared to classical GANs. With the same number of parameters, additionally, QuGAN outperforms state-of-the-art quantum based GANs in the literature providing a 48.33% improvement in system performance compared to others attaining less than 0.5% in terms of similarity between generated distributions and original data sets. QuGAN code is released at https://github.com/yingmao/Quantum-Generative-Adversarial-NetworkComment: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE

    QuFI: a Quantum Fault Injector to Measure the Reliability of Qubits and Quantum Circuits

    Get PDF
    Quantum computing is a new technology that is expected to revolutionize the computation paradigm in the next few years. Qubits exploit the quantum physics proprieties to increase the parallelism and speed of computation. Unfortunately, besides being intrinsically noisy, qubits have also been shown to be highly susceptible to external sources of faults, such as ionizing radiation. The latest discoveries highlight a much higher radiation sensitivity of qubits than traditional transistors and identify a much more complex fault model than bit-flip. We propose a framework to identify the quantum circuits sensitivity to radiation-induced faults and the probability for a fault in a qubit to propagate to the output. Based on the latest studies and radiation experiments performed on real quantum machines, we model the transient faults in a qubit as a phase shift with a parametrized magnitude. Additionally, our framework can inject multiple qubit faults, tuning the phase shift magnitude based on the proximity of the qubit to the particle strike location. As we show in the paper, the proposed fault injector is highly flexible, and it can be used on both quantum circuit simulators and real quantum machines. We report the finding of more than 285M injections on the Qiskit simulator and 53K injections on real IBM machines. We consider three quantum algorithms and identify the faults and qubits that are more likely to impact the output. We also consider the fault propagation dependence on the circuit scale, showing that the reliability profile for some quantum algorithms is scale-dependent, with increased impact from radiation-induced faults as we increase the number of qubits. Finally, we also consider multi qubits faults, showing that they are much more critical than single faults. The fault injector and the data presented in this paper are available in a public repository to allow further analysis

    Quantum Computing Reliability: Problems, Tools, and Potential Solutions

    No full text
    Quantum computing is a new computational paradigm, expected to revolutionize the computing field in the next few years. Qubits, the atomic units of a quantum circuit, exploit the quantum physics properties to increase the parallelism and speed of computation. Unfortunately, qubits are both intrinsically noisy and highly susceptible to external sources of faults, such as ionizing radiation. The latest discoveries highlight a much higher radiation sensitivity of qubits than traditional transistors and identify a much more complex fault model than bit-flip. The observed error rate is so high that researchers are questioning the large-scale adoption of quantum computers. The reliability and dependability community is asked to act to find innovative solutions to improve the reliability of quantum applications. This tutorial aims at providing the DSN community with the tools to do so and to train the attendees on quantum fault injection
    corecore